Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 19(2): e1010522, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36795653

RESUMO

Neonicotinoid insecticides target insect nicotinic acetylcholine receptors (nAChRs) and their adverse effects on non-target insects are of serious concern. We recently found that cofactor TMX3 enables robust functional expression of insect nAChRs in Xenopus laevis oocytes and showed that neonicotinoids (imidacloprid, thiacloprid, and clothianidin) exhibited agonist actions on some nAChRs of the fruit fly (Drosophila melanogaster), honeybee (Apis mellifera) and bumblebee (Bombus terrestris) with more potent actions on the pollinator nAChRs. However, other subunits from the nAChR family remain to be explored. We show that the Dα3 subunit co-exists with Dα1, Dα2, Dß1, and Dß2 subunits in the same neurons of adult D. melanogaster, thereby expanding the possible nAChR subtypes in these cells alone from 4 to 12. The presence of Dα1 and Dα2 subunits reduced the affinity of imidacloprid, thiacloprid, and clothianidin for nAChRs expressed in Xenopus laevis oocytes, whereas the Dα3 subunit enhanced it. RNAi targeting Dα1, Dα2 or Dα3 in adults reduced expression of targeted subunits but commonly enhanced Dß3 expression. Also, Dα1 RNAi enhanced Dα7 expression, Dα2 RNAi reduced Dα1, Dα6, and Dα7 expression and Dα3 RNAi reduced Dα1 expression while enhancing Dα2 expression, respectively. In most cases, RNAi treatment of either Dα1 or Dα2 reduced neonicotinoid toxicity in larvae, but Dα2 RNAi enhanced neonicotinoid sensitivity in adults reflecting the affinity-reducing effect of Dα2. Substituting each of Dα1, Dα2, and Dα3 subunits by Dα4 or Dß3 subunit mostly increased neonicotinoid affinity and reduced efficacy. These results are important because they indicate that neonicotinoid actions involve the integrated activity of multiple nAChR subunit combinations and counsel caution in interpreting neonicotinoid actions simply in terms of toxicity.


Assuntos
Inseticidas , Receptores Nicotínicos , Abelhas , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Neonicotinoides , Drosophila/metabolismo , Inseticidas/toxicidade , Inseticidas/metabolismo , Insetos
2.
Angew Chem Int Ed Engl ; 62(10): e202219114, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36646637

RESUMO

Taxol is a clinically used drug for the treatment of various types of cancers. Its 6/8/6/4-membered ring (ABCD-ring) system is substituted by eight oxygen functional groups and flanked by four acyl groups, including a ß-amino acid side chain. Here we report a 34-step total synthesis of this unusually oxygenated and intricately fused structure. Inter- and intramolecular radical coupling reactions connected the A- and C-ring fragments and cyclized the B-ring, respectively. Functional groups of the A- and C-rings were then efficiently decorated by employing newly developed chemo-, regio-, and stereoselective reactions. Finally, construction of the D-ring and conjugation with the ß-amino acid delivered taxol. The powerful coupling reactions and functional group manipulations implemented in the present synthesis provide new valuable information for designing multistep target-oriented syntheses of diverse bioactive natural products.


Assuntos
Produtos Biológicos , Paclitaxel , Ciclização , Estereoisomerismo , Aminoácidos
3.
Pestic Biochem Physiol ; 187: 105177, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36127041

RESUMO

Insect nicotinic acetylcholine receptors (nAChRs) require cofactors for functional heterologous expression. A previous study revealed that TMX3 was crucial for the functional expression of Drosophila melanogaster Dα1/Dß1 nAChRs in Xenopus laevis oocytes, while UNC-50 and RIC-3 enhanced the acetylcholine (ACh)-induced responses of the nAChRs. However, it is unclear whether the coexpression of UNC-50 and RIC-3 with TMX3 and the subunit stoichiometry affect pharmacology of Dα1/Dß1 nAChRs when expressed in X. laevis oocytes. We have investigated the effects of coexpressing UNC-50 and RIC-3 with TMX3 as well as changing the subunit stoichiometry on the agonist activity of ACh and imidacloprid on the Dα1/Dß1 nAChRs. UNC-50 and RIC-3 hardly affected the agonist affinity of ACh and imidacloprid for the Dα1/Dß1 nAChRs formed by injecting into X. laevis oocytes with an equal amount mixture of the subunit cRNAs, but enhanced current amplitude of the ACh-induced response. Imidacloprid showed higher affinity for the Dß1 subunit-excess Dα1/Dß1 (Dα1/Dß1 = 1/5) nAChRs than the Dα1 subunit-excess Dα1/Dß1 (Dα1/Dß1 = 5/1) nAChRs, suggesting that imidacloprid prefers the Dα1-Dß1 orthosteric site over the Dα1-Dα1 orthosteric site.


Assuntos
Receptores Nicotínicos , Acetilcolina/farmacologia , Animais , Drosophila melanogaster/metabolismo , Neonicotinoides , Nitrocompostos , Oócitos/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Xenopus laevis/metabolismo , Proteínas ras/metabolismo , Proteínas ras/farmacologia
4.
J Org Chem ; 87(1): 730-736, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34936365

RESUMO

A new reaction system was devised for decarboxylative radical coupling reactions by heterogeneous semiconductor photoredox catalysis. When an α-alkoxy carboxylic acid and Pt-doped TiO2 in EtOAc were irradiated with a violet light-emitting diode at room temperature, the photogenerated electron hole of TiO2 oxidatively induced the ejection of CO2 via the formation of a carboxyl radical to produce the corresponding α-alkoxy radical. C(sp3)-C(sp3) bond formation between the radicals led to dimers with reductive conversion of protons to H2 by the photogenerated electron. Alternatively, in the presence of an electron-deficient olefin, an intermolecular radical addition reaction occurred, resulting in the formation of a 1,4-adduct via single-electron reduction and subsequent protonation. These operationally simple and mild transformations are amenable to the one-step assembly of densely oxygenated linear and branched carbon chains.

5.
Proc Natl Acad Sci U S A ; 117(28): 16283-16291, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32611810

RESUMO

The difficulty of achieving robust functional expression of insect nicotinic acetylcholine receptors (nAChRs) has hampered our understanding of these important molecular targets of globally deployed neonicotinoid insecticides at a time when concerns have grown regarding the toxicity of this chemotype to insect pollinators. We show that thioredoxin-related transmembrane protein 3 (TMX3) is essential to enable robust expression in Xenopus laevis oocytes of honeybee (Apis mellifera) and bumblebee (Bombus terrestris) as well as fruit fly (Drosophila melanogaster) nAChR heteromers targeted by neonicotinoids and not hitherto robustly expressed. This has enabled the characterization of picomolar target site actions of neonicotinoids, findings important in understanding their toxicity.


Assuntos
Proteínas de Insetos/metabolismo , Inseticidas/farmacologia , Neonicotinoides/farmacologia , Agonistas Nicotínicos/farmacologia , Receptores Nicotínicos/metabolismo , Acetilcolina/farmacologia , Animais , Abelhas/metabolismo , Relação Dose-Resposta a Droga , Drosophila melanogaster/metabolismo , Proteínas de Insetos/agonistas , Proteínas de Insetos/genética , Oócitos/metabolismo , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Receptores Nicotínicos/genética , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Xenopus laevis
6.
Sci Rep ; 10(1): 7529, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32371996

RESUMO

Neonicotinoids selectively modulate insect nicotinic acetylcholine receptors (insect nAChRs). Studies have shown that serine with ability to form a hydrogen bond in loop C of some insect nAChR α subunits and glutamate with a negative charge at the corresponding position in vertebrate nAChRs may contribute to enhancing and reducing the neonicotinoid actions, respectively. However, there is no clear evidence what loop C properties underpin the target site actions of neonicotinoids. Thus, we have investigated the effects of S221A and S221Q mutations in loop C of the Drosophila melanogaster Dα1 subunit on the agonist activity of imidacloprid and thiacloprid for Dα1/chicken ß2 nAChRs expressed in Xenopus laevis oocytes. The S221A mutation hardly affected either the affinity or efficacy for ACh and imidacloprid, whereas it only slightly reduced the efficacy for thiacloprid on the nAChRs with a higher composition ratio of ß2 to Dα1 subunits. The S221Q mutation markedly reduced the efficacy of the neonicotinoids for the nAChRs with a higher composition of the ß2 subunit lacking basic residues critical for binding neonicotinoids. Hence, we predict the possibility of enhanced neonicotinoid resistance in pest insect species by a mutation of the serine when it occurs in the R81T resistant populations lacking the basic residue in loop D of the ß1 subunit.


Assuntos
Drosophila melanogaster/genética , Resistência a Inseticidas/genética , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , Animais , Galinhas , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Feminino , Ácido Glutâmico/química , Ligação de Hidrogênio , Inseticidas , Mutação , Neonicotinoides/química , Nitrocompostos , Oócitos , Domínios Proteicos , Tiazinas , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...